Experimental cancer treatments for advanced stages are more effective than previously thought. Some oncology practitioners believe that experimental drugs are harmful - they give false hope to patients because of its low efficiency (long anticipated effectiveness of the experimental treatment with special drugs produced in Canadian pharmacy only at the level of 4-6% of cases). Patients in the final stage of the disease should have greater access to information about the experimental treatment programs, and, accordingly, they and their families should have the right to know what their real chances, with a particular treatment strategy. Scientists believe that the involvement of cancer patients even in the early stages of clinical trials can be very useful for them. Besides, the search for a way out of the situation means continuing the fight against the disease. It is characterized by academic phrase "treatment of metastatic cancer still remains palliative, with a very low probability of complete remission and cure the disease."


Working mechanism of F16-IL2. The immunocytokine F16-IL2 will bind to tenascin C expressed by stromal cells of MCC tumors, and boost cellular immune responses.

IMmune MOdulating strategies for treatment of MErkel cell Carcinoma

Merkel cell carcinoma (MCC) is a highly aggressive, often lethal neuroendocrine cancer of the skin associated with the recently discovered, common Merkel cell polyomavirus (MCV). With an incidence of 0.44 per 100,000 MCC is a very rare cancer. Notably, however, although MCC is 40 times less common than malignant melanoma, MCC has a dramatically higher mortality rate than melanoma rendering MCC to the most lethal skin cancer (37 versus 15 percent). This high mortality rate is largely due to the fact that to date none of the currently available therapeutic interventions is able to improve overall survival of patients suffering from metastatic disease. Consequently, new therapeutic strategies are needed for metastatic MCC. Since several lines of evidence indicate the outstanding immunogenicity of MCC, immune modulating treatment strategies are particularly attractive. IMMOMEC is a 4-year project to establish and investigate an innovative and effective immunotherapy for MCC, thus directly responding to the aims of the topic HEALTH-2011.2.4.1-1 Investigator-driven treatment trials for rare cancers.

IMMOMEC will develop a rational immune therapeutic approach for treatment of patients with MCC that is based on the targeted delivery of interleukin-2 to the tumor microenvironment. However, IMMOMEC will not only provide a new therapeutic option for MCC patients, but will also establish the relevance of immune modulating strategies to treat solid cancers in general, establish and validate new tools to monitor patients receiving such therapies as well as compile prognostic and predictive biomarkers to individualize immune modulating therapies. Moreover, IMMOMEC will introduce a new immunemodulating therapeutic produced by a European SME, which also holds the intellectual property rights.